University College London Department of Computer Science

Cryptanalysis Lab 05

J. P. Bootle, N. Courtois

Copyright © 2016 March 6, 2019 jonathan.bootle.14@ucl.ac.uk Version 2.0

1. Elliptic Curves

Click on the green letter in front of each sub-question (e.g. (a)) to see a solution. Click on the green square at the end of the solution to go back to the questions.

EXERCISE 1. Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$. Write + for the operation of adding two points. Beware: $P + Q \neq (x_1 + x_2, y_1 + y_2)!$

- (a) Watch the tutorial on elliptic curve point addition at https:// www.youtube.com/watch?v=XmygBPb7DPM.
- (b) Browse the internet to find the formulae for the coordinates of P + Q when P ≠ Q. What about when P = Q? You can assume that Q ≠ (x₁, -y₁) since things are slightly different in this case.
 (c) Let E : y² = x³ + 3x + 3 be an elliptic curve, defined over F₇. Two points on the curve are P = (4,3) and Q = (3,2). Verify that 2*P = Q (remember that 2*P = P + P).
- (d) Construct E, P, Q in SAGE using the following commands. Check your answer to the previous part by typing 2 * P (the answer will have three coordinates, we ignore the last coordinate). What is

- $\begin{array}{l} P+Q?\\ \mathbf{p}=7\\ \mathbf{E}=\mathrm{EllipticCurve(~GF(\mathbf{p}),[3,3]~)}\\ \mathbf{P}=\mathrm{E}(4,3)\\ \mathbf{Q}=\mathrm{E}(3,2) \end{array}$
- (e) Type *E.cardinality*() to find out how many points lie on this elliptic curve.
- (f) Type *E.gens*() to obtain a set of points which generate all points in the elliptic curve group.

2. Bitcoin Elliptic Curve

We recall that **Theorem:** [Hasse 1930s] For any elliptic curve

$$|\#E(F_p)) - p + 1| \le 2\sqrt{p}$$

In bitcoin elliptic curve we have

 $p{=}1157920892373161954 {\textstyle $2 $3570985008687907853269984665640564039457584007908834671663$} \\ and$

 $_{\rm q=115792089237316195423570985008687907852837564279074904382605163141518161494337.}$ Compute in SAGE:

$$\frac{p-q}{\sqrt{p}}$$

3. Graphs For Elliptic Curves

p=109; E = EllipticCurve(FiniteField(p), [103,3]); P = plot(E

p=103; E = EllipticCurve(FiniteField(p), [41,19]); P = plot(E

```
p=next_prime(120);p
E = EllipticCurve(FiniteField(p), [13,14]);
P = plot(E, rgbcolor=(1,0,1)); P
E.cardinality()
```


4. Sub-Groups in Elliptic Curves

Let p = 71. Consider the curve $E = E(\mathbb{F}_p)$ defined by

 $y^2 = x^3 + x + 28$

Q1: Determine the number of points on E.

Q2: Show that E is not a cyclic group.

Q3: Could this curve be used or adapted to be used in crypto (as a very small size example)? Based on Lagrange theorem propose a method to insure we get a cyclic group for cryptographic applications.

Q4: What is the order of E(4,5)?

Q5: What is the maximum order of an element in E? Find an element having this order.

Q6: What is the minimum order of an element in E excluding the neutral point? Find an element having this order.

Q7: Which points are 2-torsion points? Which points are torsion points?

Some code fragments which can help:

E = EllipticCurve(GF(?), [?,28]); E.cardinality()

[E.random_point().order() for n in range(1,10)]

5. Sub-Groups and Rational Mappings and Polynomials -Important for Project D73

Consider an elliptic curve $E(\mathbb{F}_p)$ defined by

$$y^2 = x^3 + ax + b$$

where $4a^3 + 27b^2 \neq 0 \mod p$ and p > 3 is a prime.

Q1. Show that $P = (x_1, y_1)$ has order 3 if an only if 2P = -P. Use this fact to prove that if $P = (x_1, y_1)$ has order 3 then

$$3x_1^4 + 6ax_1^2 + 12x_1b - a^2 = 0$$

Q2. Show that there are at most 8 points of order 3 on this curve E.

Q3. Let p = 73, a = 43, b = 0. Find all points of order 3 (brute force not allowed).

Some code fragments which might help, actually Q1 is solved BEST by paper and pencil maths!!! Q3 is solved best by actually solving a polynomial equation.

E = EllipticCurve(GF(7), [1,6]); E.cardinality()

[E.random_point().order() for n in range(1,10)]

Section 5: Sub-Groups and Rational Mappings and Polynomials - Important for Project

(X,Y) = E.multiplication_by_m(3); X
[(29*(E.random_point())).order() for n in range(1,10)]

Section 5: Sub-Groups and Rational Mappings and Polynomials - Important for Project

5.1. Finding Roots over Finite Fields to solve Q3

Some very nice methods:

```
P.<x> = PolynomialRing(K, implementation='NTL')
f = 3*x^4 + 6*43*x^2 - 43^2 ???
f.roots(multiplicities=False)
f.small_roots()
```

another very nice method by James Carlson, needs some adaptations to mod p case

```
def qq2zz(f):
    # clear denominators of f
    c = f.coeffs()
    d = map( lambda g: g.denom(), c)
    return lcm(d)*f
```

```
def roots(f, q):
# return list of roots of f in finite field of q elements
K.<T> = GF(q)
r = [ ]
```


Section 5: Sub-Groups and Rational Mappings and Polynomials - Important for Project

```
g = qq2zz(f).change_ring(K)
for a in K:
if g(a) == 0:
r.append(a)
return r
def search(f,a,b,k):
 # search for roots of f in GF(p^k) for p in [a,b]
  for p in prime_range(a,b):
   rr = roots(f, p^k)
   if rr != []:
    print p, rr
S.<u> = PolynomialRing(QQ)
f = 2/5*u^5 + 3/7*u^2 + 1
search(f, 2, 20, 2)
```

Roots with 2 variables a and b? Possible, one method is to use resultants, we will post sample code later. (see code in our last year project TwinFace).

Solutions to Exercises

Exercise 1(b) If $P \neq Q$, we set $s = (y_1 - y_2)(x_1 - x_2)^{-1}$. If P = Q, we take $s = (3x_1^2 + a)(2y_1)^{-1}$. Then, $(x_3, y_3) = (x_1, y_1) \oplus (x_2, y_2)$, where $x_3 = s^2 - x_1 - x_2$, and $y_3 = s(x_1 - x_3) - y_1$.

These formulae come from the definition of addition on an elliptic curve that you saw in the video. This uses different points of intersection between straight lines and the curve. \Box

Solutions to Exercises

Exercise 1(c) Substituting the coordinates of P into the correct formula from the previous part shows that $2^*P = Q$.

Solutions to Exercises

Exercise 1(d) You should find that P + Q = (1, 0).

13

